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ABSTRACT
27381

An expansion method is used to calculate the expectation values
, 2 2.0
of various operators for the lowest “S and “P states of all members
of the lithium sequence. The method is extended to the calculation of
matrix elements connecting the two states and the electric dipole
transition integrals are calculated. A comparison with the results
of more refined calculations shows that despite its simplicity the

method is capable of high accuracy.
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AN EXPANSION METHOD FOR CALCULATING ATOMIC PROPERTIES

I. THE 2S AND 2Po STATES OF THE LITHIUM SEQUENCE

M. Cohen and A. Dalgarno

1. INTRODUCTION

An expansion method has been used to calculate the expectation
values of various operators for the ground states of all members of
the helium and the beryllium isoelectronic sequences (Cohen & Dalgarno
1961). It may also be applied to excited states and to the calculation

of matrix elements between different states.




2. THE RESTRICTED HARTREE-FOCK APPROXIMATION

2,1, The ls 225 25 configuration

We choose a set of units in which the scale of distance is Z a.u.
and of energy is 22 a.u., where Z is the nuclear charge. Then with

the definitions

Bo=Liqv? . klerD) 1 ()
2 r 2 T
r
k 1 * k+2., k[
and Y (u,v) = - u(s).v(s)s ds+r f L Sl)(_\{ S ds,
T 0 r [
(2)

the restricted Hartree-Fock equations for the radial 1ls and 2s-orbitals

u(r) and v(r) are

H.u + [Yo(ls,ls)+Y0(Zs,Zs)]u - %YO(].S,ZS)V = ¢(ls)u + %e (ls,2s)v

0
(3)

and Hov + ZYO (ls,1ls)v - Yo(ls,Zs)u = ¢(2s) vte(ls,2s)u. (&)

With orthonormal u and v, it follows that
: 0 0 1 0
e(ls) = <U|H0|L> + <u|Y (1s,1s) + Y (25,25)|1>- 3 <u|Y (15,23)|v> ,

(5
e{’s) = (le |v + 2 vIYo(ls,ls)lv - <V|YO(1S,25)IU> s
0

(6)

and €(ls,2s) = - <VIY0(ZS,25)|u> = -<v|Y0(1s,2s)|v) .
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Expanding in powers of Z ~,

N
= = ,r
u uo + u1 + L., v VO + v1 &
(8
e(nk) = eo(nz) + el(nz) + ...,
it follows that
~
Yk(nﬁ,n'l') = YT(nE,n'l') + Yg(nz,n'z') + ... [
€))
and e(nf,n'4') = el(nz,n'z') + ez(nz,n'z') + v
The zero-order equations derived from (3) and (4) are
(H, -~ €. (ls)) u, =0
0 0 0 (10)
and (HO - GO(ZS)) Vg ¥ 0,
which have the orthonormal hydrogenic solutions
‘\
1
Ug = 2 exp (-r), eo(ls) = -5
p (11)
1
vo = (WA (2 - Dexp(-3r), €4(28) = - 5

From the first-order equations,

(Ho-eo(ls))u1+[Y$(ls,1s)+Y8(25,25) - (-:l(ls)]uO = %[Y?(ls,ls)+e1(ls,25)]vo
(12)

and

(Ho-e0(2s))v1+[2Y$(1s,1s)-e1(25)]v0=[Y$(is,25)+€1(ls,25)]uo, (13)




we have that
/

;—'1(15) = GOIY(I)(ls,ls)|uo> + <uo|Y$(25,25)|u0> -5 '\uOIY?(ls,Zs)lvo\/,

(14)
€1(23) = 2<10|Y(1)(1$,1$)|v0> - <VOLY?(1S’25)IUO> (15)
and el(ls,Zs) = . <vO|Y(1)(ls,2s)|v0> . (16)

The Slater integrals appearing in (14), (15) and (16) are gathered.to-

gether for convenient reference in appendix I. Similarly, from the

second-order equations we have that
€,(ls) = 3<1 IYo(ls 1s) |u ) + 24 ]Yo(ls 2s) v N+ (u |Y0(25 2s) |u
2 1'71 3 0 1'71 ? o 1'71 ? 0)

0 0
- <v1|Y1(ls,25)luo> - %éllYl(ls,Zs)lvo> -3 <vlluo> el(ls,2s)

a7

and
ez(Zs) =2 <v1|Y§)(ls,ls) |v0> + 4 <u1|Y(1)(25,Zs) |u0> -2 <11|Y(1)(ls,25) |vo>
- <;1 ]Y(l)(ls,Zs) |uQ> - <u1 lv0> el(ls,Zs),

(18)

where we have taken u and v normalized up to first order, so that

<u1|uo> = <v1|v(> = 0. (19)

If the total energy E is similarly expanded,

= ceos 2
E=E)+E + ~(20)




it may be shown that
2€n(ls) + en(Zs) = (n + l)En; (21)

the matrix elements appearing in (17) and (18) have been evaluated by
Linderberg (1961) and lead finally to the energy expansion (in conven-

tional atomic units)

E = -1.1252% + 1.022 805 21z - 0.354 549 03 + 0(z™1).
(22)
The expectation value <L of an operator
L = Z(rl) + z(rz) + ﬂ(r3) (23)
is given in the restricted Hartree-Fock approximation by
<L> = 2<ul£|u> +<v|£|v>' .
= 2<ﬁlls>+ <£|2$> , say.
The zero-order contribution is
<L>0 = 2<2lls>o + <£[2$>0
(25)
= 2<u0l£luo> + <v0|2|v0>
and the first-order contribution is
<L>1 = 2<2lls>1 + <Z!23\1
(26)

4l Llugy + 2¢v,| £|v0>)
on account of (19).
Following the procedures of Dalgarno & Stewart (1956, 1958) we

introduce the functions x and y which satisfy
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(Hy - €4(1s)) x + (4 - (e]18) ) uy =0, (27)

(Hy - €5(28)) y + (£ - (zlzs)o> vg = 0 (28)
and <xlu0) = (y]v0> =0 (29)

We note that it follows from (10), (27) and (28) that
Sxlvy + {yluy) = 0. (30)
We now have (from (12), (13), (19), (27) to (29))

Clisy, = 26, 2l = z{<x|y<1’<1s,1s>|uo> + (x| Y] (2s,28) [uy) -3¢x| Y0 (15, 28) v, )

_%el(ls,2$)<x|vog} (31)

and

(ﬁlZs)l = ZQHJ£IVO> = 2<ing(1s,ls)|v0>-<y|Yg(ls,23)h%))-el(ls,25)<y|uoi}

(32)
so that

@, - 2{2<X|Y‘;(1s,1s>1uo>+ 2(x |0 (25,2806 ) + 2y |¥)(1s,15) |v )

_<x|Y2(ls,25)|v0>-(yWY?(ls,Zs)[uog}
(33)

which is independent of the non-diagonal Lagrange multiplier el(ls,ZS).

The solutions of (27) and (28) for £ = ' (n > 1), r-lr-Z’ 5(x) and

V4 have been listed by Cohen & Dalgrano (1961). Using them, we can

write the expectation values of these operators in atomic units

6




. . -1, .
(correct to first order in Z ) in the form

@)
2

(Dalgarno & Stewart 1960; Cohen & Dalgarno 1961) and we present in

1}

A(ls){z - o(1s))™, (34)

A(2s)(z - o(28)}" (35)

]

Tables 1 and 2 the values of the constants A, 0 and n. It is of interest
to examine the influence of the direct and exchange interactions on the
effective screening constants o(ls) and ¢(2s) and the tables show the
values obtained by including successively in the evaluation of (33)

and (34) the direct interaction, the exchange interaction and the

Lagrange multiplier terms.

The effects of the Lagrange multiplier terms are small and the be-
havior of the screening constants is very similar to that found in the

Hartree-Fock approximation for the beryllium sequence.
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2.2. The 1s 22p 2P0 configuration

The restricted Hartree-Fock equations for the radial 1ls- and 2p-

orbitals u'(r) and w(r) are

H.u' + [Yo(ls',ls') + YO(ZS,Zp) ]u'-%Y'(ls',Zp)w = ¢'(1ls)u’

0 (36)

and Hyw + 2Y0(1s',ls')w-%Yl(ls',Zp)u' = ¢(2p)w, (37)

and with normalized u' and w, we have that

e'(ls) = <.1' IHolu'> + <u'|Y0(1s',ls') + YO(Zp,Zp)Iu'> -% <u'lY1(1s',2p)lw>
(38)

and €(2p) = @|H1|w> + 2<¢|Y0(15',15')Iw> -% <w|Y1(ls',2p)|u'> .
(39)

Expanding as before, the zero-order equations derived from (36) and

(37) are
(H, - €.(1s)) ul =0
0 0 0 (40)
and (H1 - eo(Zp)) wy = 0,
which have the hydrogenic solutions
ué = 2exp(-r), eé(ls) = -1,
(41)

v = (1/2J2)r exp(-11r), eo(2p) = 7%-

We may therefore write ugy
2

2.0
the S and P configurations, and the single kernel function Y?(ls',ls')=

and eo(ls) for the zero-order terms in both
0 .
Yl(ls,ls). Then, from the first order equations

10




<HO-€O(IS))ui + [Yg(ls,ls) + Y(l)(Zp,Zp)-ei(ls) ]uo = %Yi(ls,Zp)wo
(42)

and (I-Il-‘r_o(Zp))r.r1 + [2Ycl)(ls,ls)-<-:1(2p) ]wo = %Yi(ls,Zp)uo,
(43)

we have that

ei(ls) = éOIYg(ls,ls)lu& + <u0|Y(1)(2p,2p)|u0> -% éolYi(ls,Zp)lwc}

(44)

- 0 1 < 1 > .
and € (2p) =2 <woLY1(1s,1s)Iwo> -5 o l¥ (Ls,2p) [ug ) 5 (45)
values of these Slater integrals are listed in appendix I, and the total

energy is given in atomic units by
E = -1.12522 + 1.093 526 14Z + .... (46)

\ 2.0 .
To evaluate the matrix elements<L>for the P state, we introduce

the function z which satisfies

(Hy-eq(2p))z + (2- (212 ) g = 0 47)
and <z|w0> = 0. (48)

Then we have in complete analogy with (31) and (32)

<I,|ls'>1 = 2 ui|£|u0> = 2‘.:<x|Yi)(ls,ls)|uo>+ <le(1)(2p,2p)|uo>

-%élYi(ls,Zp)lwc)} (49)
and <£|2p>1 = 2<11|,e|w0> = 2{2<z|Y(l)(ls,1s) |w0> -% <z|Yi(1s,2p) |u0> }
(50)

11



We have solved (47) for various operators £. For £ = rn(n >1),

'</Z|2p>o = (n+b)!/24

n+l k
T,

and z = -2(n+4)! Z m,

k=2
for E=r-1, <?|2€>0 = %
and z = %rwo
and for £=r~2, <?|2€>0 = '%5

L, 2

and z = (6r + 31n r)wo.

For £=r-3, (47) has strictly no well-behaved solution.

(51)

(52)

(53)

(54)

(55)

(56)

The difficulty

may be circumvented by considering instead the operator £=r-3 + 215(x)

and noting that

<w|6(r)|w> =0

to all orders. Corresponding to £=r-3 + 2n5(x),
=L
<£|2p>o = 2%

- 1 L1
and z = (-1/r + 3ln r + 12r)wo.

Similarly we replace r-4 and obtain

</l|2p>0 =§%

1 1
3 12

and z = (-1/r2 -1/r + Sln r + ——r)wo

12
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(58)

(59)

(60)
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The operator V4 presents no difficulty, and we find

<l|2p>o = 275 (62)

_ 8, 1
and z = (-4/r + 31n r + gr)wo. (63)

The expectation values of these operators may now be written in atomic

. . . -1, .
units (correct to first order inmn Z ~) in the form

e
and <€|2p>

as for the 2S state. The values of n, A and o obtained by successively

A'(1e)(z - c@1s) ® (64)

A(2p) [2 - o(2p) " (65)

including the direct and exchange interaction terms are given in Tables

3 and 4.

The screening constants for the ls shell of the 2PO state are
similar to but slightly larger than those of the 25 state, the increased
screening arising from the exchange interaction with the outer shell
which decreases the screening in the 2S state and increases it in the
2P0 state. The screening constants of the outer electron in the 2PO
state are markedly larger than those in the 2S state and in contrast to
those in the 2S state they increase uniformly with increasing distance
from the nucleus. The anomalous behaviour of the 2S_screening constants

has been attributed previously to the node of the 2s orbital (Cohen &

Dalgarno 1961).

In the case of the 2PO state, the screening constants of the outer

electrons are large and the screening approximation may be misleading
for the lowest number of the sequence {(2=3) but it should be reliable for

the higher numbers.
13
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2.3. 1522328- 1522p2P0 transitions

The procedure by which we are able to avoid the determination of
the first-order orbitals may be extended to the calculation of matrix

elements connecting different states. To first order

</|Z|w> = <f|2|w>o +<v|£|w 1’ (66)

where <zl£lw 0 = <v01z|w0> (67)
and <v|[,[w>1 = </1|I,|wo>+ <v0|2|w1> s (68)
assuming that <v1|v0>= <w1|w0> = 0. (69)

We now introduce functions V and W such that

(Ho-eo(Zs))V + Ewo - <v0|,le0> vy = 0, (70)

i
o

\
(Hy-e o (2p))W + vy - <v0|zlwo/ Wy = (71)

and <v!v0>= <w!wo> = 0. (72)
It then follows from (13), (43), (69) to (72) that
</|Elw>1 = [26/]Y2(15,15)]v0> - <VIY(1)(15,23)IUO>- 61(15,23)<I|u0>]

+[2<W|Y(1)(ls,ls) |w0> -% <‘W|Yi(ls,2p) |u0> ].

(73)

The calculation of electric dipole transition probabilities, using

the dipole length formulation, may be reduced to the evaluation of

R2 =%|<v|r|w>l2. (74)

16




To zero order, <v0|rlw0>= -¥3lz, (75)

and the solutions of (70) and (71) for this case are

V = (1/26) (6r2-r>)exp(-ir) (76)

and W= (1/2 2) exp(-1r) ; 77)
thus, correct to first order

<f|r|w> = -% {1 + &9_82__393 + 0(2'2)} (78)

and applying the screening approximation,
RZ = 9/(z - 1.699)2. 79)

A comparison of the values of R2 given by (79) with the results of more
refined variational calculations by Flannery & Stewart (1963) is made
in Table 5. Equation (79) is correct in the limit of infinite Z but
even for Z as low as 3 the error does not exceed 4%. Since the conver-
gence of (78) is poor for 2Z=3, the smallness of the error of (79) may

be partly fortuitous.

17




TABLE 5. VALUES OF R FOR THE 2S-2PO TRANSITION

Flannery &
Z Stewart equation (79)
3 2.3820 2.3059
4 1.3207 1.3038
5 0.9129 0.9088
6 0.6981 0.6975
7 0.5653 0.5659
8 0.4752 0.4761

18




3. THE UNRESTRICTED HARTREE-FOCK APPROXIMATION

3.1. The (1ls 1ls' 2s) configuration

The unrestricted Hartree-Fock equations for the radial ls, 1ls' and

2s orbitals u' (r), u# (r) and vf (r) are

Hou.r + [Yo(ls¢ ,ls# )+YO(251- ,ZsT )juT - Yo(lsT ,ZSJr )VT = €(15T)U1- ,

(80)

H0u¢ +EYO(lsf,lsT)+Y0(25f,ZST)JJ = e(ls#)u#, (81)

HOVJr -+-[:Y0(ls1L,ler)+Y0(ls#,15'%)];r - Y0(15T,2ST)UT = e(gsT)VT,
(82)

where the orbitals u-r and vJr are associated with parallel spins. Then
(—:(ls*)=<1‘r IHOiuT>+<1.r [Yo(ls$ ,ls* )+Y0(25T ,Zsf) ]u4r>--<u’r IYo(lsT ,ZST) |v1->
(83)
e(ls*)=<f Inolu*>+ <u* lYo(lsT,lsT)+Y0‘(28T,231:)-|u*> , (84)
e(Zs‘r)=<vTL |H0|vf> + <v1. IYO(lsT ,lsT)+Yo(ls¢ ,ls*) IVT>- <vqr |Yo(lsqr ,ZSf)Jvf')>.
_ (85)

When we expand in powers of Z_l, the corresponding zero-order equations

are
oyt
(HO - eo(ls ))uo = 0,
0. %
(HO - eo(ls ))u0 = 0, (86)
U T
(HO - eO(ZS ))v0 = 0,
which have the hydrogenic solutions
+ % t % 1
uy = ug = uy = 2exp(-r), eo(ls ) = eo(ls ) = eo(ls) =- 3
(87)
vf = v, = (1/N2)(2-r)exp(-ir) € (231-) = ¢.(2s) = - L
o Vo pi=2t/s 0 0 8

19




Because of the identities of (87), the first-order equations are

(Ho-eo(ls))u§ + [Yg(ls,ls)+Y2(25,2s) - el(ls.r)]uo = Yg(ls,Zs)vo,
(88)
(He-e. (1s))u’ + [¥O(1s,15)+Y°(2s,28)-¢, (18" ) Ju, = 0 (89)
0 "0 1 1 ’ 1 ’ 1 0
and (HO-G'O(ZS))V.; + [ZYg(ls,ls)—el(ZsT)]vo = Y(l)(ls,Zs)uo, (50)
so that
€1(lsf) = <10|Y§)(ls,ls)]u0> + <u0|Y(]?(25,23) |u0> - <u0[Y$(ls,2s) lvo> s
(91)
el(ls*) = <uOlY(1)(1S’1S)|u0> + <uO|Y(1)(ZS’ZS) lug> s (92)
el(ZsT) = 2 <v0|Y(1)(ls,1s) |uo> - <vo|Ycl)(ls,25) luo> . (93)

The appropriate generalization of (21) for the total energies Eil is

en(lsf) + en(ls*) + en(2s1-) (n + l)E; (94)

from which it follows that
(95)

differences in the total energies derived from the restricted and unres-

tricted Hartree-Fock approximation appearing first in second order.

The second-order equations yield
+ 0 + 0 + 0 1 0 ¥
E2 = <u0[Y1(ls,1s) |u1> + <u0lY1(ls,ls) lu:L >+<uOIYl(ZS,25) Iu]>+<xolY1(2s,25) Iu1>

0 + 0 1 0 T
+2 <rolYl(ls,ls)v1> - <uolY1(ls,Zs) |v1>- <v0|Yl(ls,25) |u1> .

(96)

20




The difference between the second-order energies derived from the

unrestricted and restricted schemes may thenm be written

1 0]
E) - E, = <Aul|Y1(ls,23)|vO> (97)
where Aul is the function defined by
Mu, = u¢ (98)
Y1 TN T Y

(cf. appendix II). With the use of the solution for Aul derived in

appendix III, it follows that

3 727 443 404 983

+ 128
Ey - By = - 537447 1n(9/8) -
2" "2 531 441 1 594 323.10%0
= - 0-00 026 216.... (99)

The small difference between the restricted and unrestricted
eigenvalues is in harmony with the several variational calculations

(cf. Nesbet 1960).

After these calculations were completed, a paper by Sharma (1962)

appeared in which ET was evaluated directly. Taken in conjunction with

2

the restricted Hartree-Fock calculations of Linderberg (1961), Sharma's

results are identical to (99).

Not only is the energy unchanged to first-order by relaxing the
requirement that the ls orbitals be identical but also the expectation

value of any operator of the form (23). Thus the zero-order term of

Q;ﬁ = @ L)+ of ety + of L) (100)
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is identical to (25) and the first-order term is

@z = <"|1‘°‘f>1 + <Z|1S¢>1 + <3l25f>1; (101)

the individual first-order contributions may be written, using (27)

and (28),

<Z|13T>1 = 2<<|Y§_)(ls,ls) + Y2(25,25)|u0>- 2<x|Y(l)(ls,2$)lvo>,

(102)
ehs'y, = 2(e|¥2(1s,15) + v0(25,25) |uy), (103)
<z|25“r>1 = ZQIZY?(ls,ls)v& - 2<y]Y(l)(ls,25)|uo>, (104)

and their sum is

4;% = 2[<x|2Y2(ls,ls) + 2Y?(25,25)|u0> - <le?(ls,25)|vo>‘+ <y|2Y$(1s,ls)lvo>

0
-(y 1Y (1s,28) |ug)l, (105)
which is identical to (33).
3.2, The spin-density

The spin-density operator, which has attracted considerable attention
in recent years {(cf. Sharma 1962), does not have the form (23) and there
occurs a difference in first order between the values predicted by the

restricted and unrestricted approximations. The spin density is directly

related to the quantity

() = an({a’ [a(o) [u)- (o [aco) [oF )+ GF o) v, (106)
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which reduces to <f>= lm<1|5(r)lv> (107)

in the restricted approximation. From Table 2, (107) is given correct

, . -1
to first-order in 2

by
<E> = 1(z - 1.0603)°. (108)

For lithium, (108) has the value 3.649, whereas the value computed from

numerical Hartree-Fock orbitals is 2.095 (cf. Nesbet 1960).

Sharma {1962) has calculated {106) correct to first corder by solving

for u;, ui and v:. He obtains the result
\ 3 0.648 795 2 0.730 608 2 1.170 325 2
<%/ =2 [(? - —4—32———7> -<2 - —4——Ef———> +<6.707 107 - —4——7r——-{> ]

(109)
which for lithium has a value of 5.320. However, this procedure is not

strictly a consistent one since (109) omits second-order terms arising

from <@§[n6(r)|u0> while retaining <?:|n8(r)lﬁ;> .

The calculation can be carried out to a similar accuracy without

determining ug, ui, and v+ Thus it is easily shown that to first order

1
<f> = 4{<v0|1t8(r)|v0> - 2<x|Y?(ls,Zs) |v0>

0 0
+ 4<y[Yl(ls,ls)|v_O> - 2<y|Y1(15,Zs)|uo> },
(110)
where x and y are the solutions of respectively (27) and (29) correspond-
ing to £ = ®(r). Evaluating (110), we obtain for the unrestricted

approximation

3 1 ‘ 2
= 1 - —_— -
<f> 52 2187(5024 21721n3+3841n2)2" + 0(2) (111)
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which becomes on application of the screening approximation

(£) = 4z - 0.8852)°. | (112)

For lithium, (112) has the value 4.729. If we assume that (112) over-
estimates by the same factor as does (108), we obtain a modified value
2.715 for <f>, which is close to that expected from a complete calculation
with the unrestricted Hartree-Fock approximation. (The observed hyperfine

splitting corresponds to a value of 2.9062 for <f>).

It may be concluded that the Z-expansion procedure provides a quan-
titatively valdable method for rapidly assessing the consequences of
relaxing the restrictions which are contained in the conventional Hartree-

Fock approximation. .

This work has been supported in part by N. A. S. A. and in part by

a grant from the National Science Foundation.

APPENDIX I. VALUES OF THE SLATER INTEGRALS

<10|Y(l)(1s,1s) |u0> = —g-, (11)
uo Y0 (25, 25) juo> - <\70|Y(l)(ls,ls)vo> = % (12)
Gl Y21, 20) vy ) = 22, (13)
o ¥225,20) vy ) = G 10018, 20) [y = ;’ig (14)
<JOIY(1)(2p,2p) |u0> - <w0|Y(1)(ls,ls) |w0> - 2= (15)
<10|Y§)(1$,2p)|w0>= 21—11827. (16)
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APPENDIX II. DERIVATION OF EQUATION (102)

The solutions of equations (12), (13) may be written formally

; 4
= - 1 -
u uo(fl(ls,ls) + fl(Zs,Zs) 2fl(ls,ZS)}+ 361(18,25)V0

1
(I11)

and

8
v, = vo{Zgl(ls,ls) - gl(ls,ZS)} - §€1(1S»25)“o> (I12)

where
(H, - eo(ls))[uofl(Zs,zs)] + (Y?(Zs,zs) - <u0|Y‘1)(zs,zs)luo>}uo =(£=1,2)

(II3)
and

(Hy - €y(18)) [u,f, (15,28) ] + (Y?(ls,Zs)vo - <uo|Yg(ls,2$)|vo> u,) = 0,

(114)

with similar equations for the 81 functions.
Similarly, the solutions of (90), (91) and (92) may be written

u. = uo[fl(ls,ls) + fl(ZS,Zs) - fl(ls,ZS)}, €115)

1
ui = uo(fl(ls,ls) + f(2s,2s5)}, (116)
1‘—
and v, = v0{2g1(1s,ls) -gl(ls,ZS)}. (I17)

When the difference (E - E2) is written in terms of Uy, Vg and the fl’

8 the result is

2
E; - E2 = %(<uof1(1s,25) IYg(ls,Zs) |v0>+ % <v0|Y?(ls,2s) lvo> }
(118)

(] O - 1
= <Au1 )15, 28) iv0> (1I9)
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from the definition of AMl and the use of equation (16).

APPENDIX III. SOLUTIONS OF THE FIRST-ORDER EQUATIONS

We take as an example the equation (II4) for fl(ls,ZS) which occurs

in Aul (equation (98) of the text):

(1, - eg(1s)) [ugf, (1s,25)] + {yf(ls,zs)vo - <ﬁ0lYg(ls,25)|vé>uo} = 0.

(I111)
The equation for fl may be written
1,0 0 -
5 (udE, + ™ YV - <§olyllvd> =0, (1112)
where
2 du : S
_uat o1 Ty dd
H () = -Z{er + 2'\\10 ar * r/ dr° (I1113)

We thus have a first-order equation for dfl/dr which may be inte-

grated directly; the final result is

r
_ -2 0 0 2, 2 ,
fl(r) = ZK/Eruo(r)] dr\jp[qulvO - <uOlY1|vo> uo}s ds + constant;
0

(I114)

the constant must be chosen so that <%O‘fllu0> = 0.

The solution fl(ls,ZS) is thus found to be

_ 8 112 16 16
£,(1s,28) = {(- 555 (U/x) + 5557 + 739 ¥) + 725 ¢1(¥)

8 8 2 1 2
-exp(-r)(-7§§(1/r)+ 7T + 57T + 37 ¥ )},

(I115)
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with

r
¢1(t) =f "i' (1 - exp(-s) }Jds + ¢1(0)
0
= 11 3
®1(0) = - (Ig + 1ln E)

to satisfy the orthogonality condition.
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